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Wave formation on a falling film is an intriguing hydrodynamic phenomenon involving 
transitions among a rich variety of spatial and temporal structures. Immediately 
beyond an inception region, short, near-sinusoidal capillary waves are observed. 
Further downstream, long, near-solitary waves with large tear-drop humps preceded 
by short, front-running capillary waves appear. Both kinds of waves evolve slowly 
downstream such that over about ten wavelengths, they resemble stationary waves 
which propagate at constant speeds and shapes. We exploit this quasi-steady property 
here to study wave evolution and selection on a vertically falling film. All finite- 
amplitude stationary waves with the same average thickness as the Nusselt flat film are 
constructed numerically from a boundary-layer approximation of the equations of 
motion. As is consistent with earlier near-critical analyses, two travelling wave families 
are found, each parameterized by the wavelength or the speed. One family y1 travels 
slower than infinitesimally small waves of the same wavelength while the other family 
y2 and its hybrids travel faster. Stability analyses of these waves involving three- 
dimensional disturbances of arbitrary wavelength indicate that there exists a unique 
nearly sinusoidal wave on the slow family y1 with wavenumber a, (or a2) that has the 
lowest growth rate. This wave is slightly shorter than the fastest growing linear mode 
with wavenumber a, and approaches the wave on y1 with the highest flow rate at low 
Reynolds numbers. On the fast y2 family, however, multiple bands of near-solitary 
waves bounded below by af are found to be stable to two-dimensional disturbances. 
This multiplicity of stable bands can be interpreted as a result of favourable interaction 
among solitary-wave-like coherent structures to form a periodic train. (All waves are 
unstable to three-dimensional disturbances with small growth rates.) The suggested 
selection mechanism is consistent with literature data and our numerical experiments 
that indicate waves slow down immediately beyond inception as they approach the 
short capillary wave with wavenumber a2 of the slow y1 family. They then approach 
the long stable waves on the yz family further downstream and hence accelerate and 
develop into the unique solitary wave shapes, before they succumb to the slowly 
evolving transverse disturbances. 

1. Introduction 
Since the pioneering experiments of Kapitza (1948) and Kapitza & Kapitza (1949), 

the intricate wave structures that appear on the interface of a freely falling film have 
attracted considerable interest. By carefully controlling the amplitude and frequency of 
the imposed disturbances, they and many other subsequent experimentalists observed 
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that after a linear inception region where the fastest growing linear two-dimensional 
wave with wavenumber a, is selectively amplified, the waves on a water film, for 
example, evolve downstream first into short periodic, nearly sinusoidal waves about 
1 cm in length and then into very long ‘solitary’ waves which are more than 4 cm long. 
The latter waves typically consist of large tear-drop humps with steep downstream 
edges which are preceded by small, short capillary ‘bow’ waves. These solitary waves 
break up into three-dimensional waves further downstream. If the inlet flow rate is 
periodically forced at large amplitude and low frequency, the near-sinusoidal and 
solitary waves can be observed immediately without an inception region. These two- 
dimensional waves also seem to persist for long distance downstream (Nakoryakov, 
Pokusaev & Radev 1985). If, on the other hand, the disturbances are not properly 
controlled, the interface may break up into spatially and temporally irregular three- 
dimensional waves with pronounced transverse variation without exhibiting the 
sinusoidal and solitary two-dimensional waves. This typically occurs when three- 
dimensional disturbances are not suppressed at the inlet. In all the experiments which 
yielded two-dimensional waves, they are observed to evolve slowly downstream such 
that over a region of approximately 10 wavelengths, they do not change their shape or 
speed appreciably (see Kapitza’s photograph in figure 11 for his 17 cm column). In 
contrast, three-dimensional waves tend to be non-stationary. This suggests that one 
can model the local two-dimensional waves as stationary waves which propagate at 
constant speed without changing their shapes. Another unique feature of two- 
dimensional waves which evolve through all three (inception, sinusoidal and solitary) 
wave regimes was first pointed out by Stainthorp & Allen (1965). The waves tend to 
decelerate as they enter the nearly sinusoidal range from the inception region and 
accelerate as their wavelength increases downstream towards the solitary wave limit. 

Linear stability theory for falling films pioneered by Benjamin (1957) and Yih 
(1963), began soon after the first experiments were carried out. With modern 
computers, the solution of the Orr-Sommerfield equation for this problem is now 
complete. However, it was clear even at an early stage that wave evolution on a falling 
film is an extremely nonlinear phenomenon that cannot be described by a linear theory. 
The linear results and existing experimental data demonstrated that, even for a well- 
controlled experiment with water, an arbitrary small wave will increase its amplitude 
ten-fold according to the linear theory after an inception region of approximately 30 
film thicknesses. Long before this, nonlinearity has already begun to manifest itself and 
saturate the exponential linear wave growth in the inception region. The saturated 
finite-amplitude waves evolve downstream, in the quasi-stationary manner described 
earlier, from sinusoidal waves to solitary waves before breaking up into non-stationary 
three-dimensional patterns. This quasi-stationary evolution of the waves suggests that 
if one can construct all stationary waves on the falling film and analyse their stability, 
the most stable or, more accurately, least unstable waves among these would then be 
the selected ones. This approach has also been applied to many other hydrodynamic 
phenomena such as Poiseuille flow (Pugh & Saffman 1988). Because of the extreme 
complexity of the full Navier-Stokes equation with nonlinear free-surface boundary 
conditions, most nonlinear studies have been based on the long-wave lubrication 
approximation (Lin 1974; Nakaya 1975) at low Reynolds numbers, R - O(1). With 
this approximation, the Navier-Stokes equation reduces to a single partial differential 
equation commonly known as the evolution equation for the interface h. These 
evolution equations are highly nonlinear in h. If one carries out an expansion in h and 
stipulates a relative order between the two expansion parameters, the inverse 
wavelength and the wave amplitude, one can simplify the strongly nonlinear evolution 
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equations into weakly nonlinear ones like the Burgers’ equation and the KdV equation 
for negligible surface tension (Benney 1966). For the case of strong surface tension and 
for amplitudes the same order as wavenumbers, a weakly nonlinear evolution equation 
which is now known as the Kuramoto-Sivashinsky equation results (Lin 1974; 
Shkadov 1973). These weakly nonlinear equations then allow the first estimates of the 
amplitude and speed of the near-sinusoidal stationary waves immediately beyond the 
inception region via the classical normal mode expansion of the Stuart-Landau 
formalism. This was carried out by Benney (1966), Gjevik (1970), Nakaya (1975), 
Tougou (1981), Chang (1989) and Lin (1974) who even carried out a sideband stability 
analysis of the sinusoidal waves by deriving a complex Ginzburg-Landau equation. A 
family of stationary waves with wavenumbers ranging from the neutral wavenumber 
a,, to zero and with speed lower than the critical speed (three times the average velocity) 
are found. Since such a normal mode expansion preassumes that the waves contain 
only a few discrete Fourier harmonics, typically the unstable fundamental a and its 
stable overtone 2a for some wavenumber a near a,, it can at best describe only the 
nearly sinusoidal waves near ao. (For a more modern and systematic description of the 
Stuart-Landau theory using Center Manifold theory, see Cheng & Chang 1990 and 
Fujimura 1991 .) Whenever the overtone 201 becomes linearly unstable, the Stuart-- 
Landau equation with only one wave amplitude becomes invalid. Moreover, the 
Stuart-Landau equation neglects the subharmonic mode :a which is assumed to be 
linearly stable. If ;a is linearly unstable, nonlinear waves described by the 
Stuart-Landau equation are often destabilized by subharmonic disturbances (Cheng & 
Chang 19923) and undergoes a bifurcation to yield a new wave with significant 
subharmonic content. Since 2a, for a falling film becomes unstable soon after critically 
and :a, is always unstable, the normal mode expansion theory resulting in a single 
amplitude equation for the fundamental is quite limited in its application. It is 
probably only appropriate for near-sinusoidal waves close to the critical Reynolds 
number or short waves near the neutral curve (Prokopiou, Cheng & Chang 1991). The 
weakly nonlinear equation itself, however, remains valid for all small-amplitude waves 
at low R. It is then possible that small stationary waves with a large Fourier mode 
content, that escape the classical Stuart-Landau normal mode expansion, still exist. 
This was first confirmed by Tsvelodub (1980), Demekhin (1983) and Demekhin & 
Shkadov (1986) who demonstrated numerically that the Kuramoto-Sivashinsky (KS) 
equation possesses other stationary waves with large Fourier content. They are 
actually an infinite number of stationary wave families, each parameterized by the 
wavelength. One family begins with the short, nearly sinusoidal waves with 
wavenumbers close to the neutral one. These are the ones estimated by earlier 
investigators using normal mode expansion. Subsequent wave members, however, 
increase their mode content rapidly, culminating at a solitary wave termination that 
has an infinitely broad Fourier band. These waves resemble the waves observed in the 
solitary regime with the unique tear-drop hump and the front-running capillary waves. 
Chang (1986) obtained an analytical estimate of the correlation between the speed c 
normalized with respect to the average velocity and the dimensionless amplitude h of 
all solitary waves, h -  1 = +;(C- 3), via a normal form analysis. The two signs on the 
correlation reflect his discovery that two major families of waves, not one, have speeds 
c close to the critical speed, which is three times the average velocity. The near- 
sinusoidal members of the slow family y1 are the ones estimated by the Stuart-Landau 
formalism, which is essentially a Hopf bifurcation analysis near the neutral 
wavenumber a. where y1 bifurcates off the Nusselt flat-film basic state. The fast family 
yz arises due to a unique characteristic of the falling film which yields an additional flat- 
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film basic state, the ‘conjugate’ solution. The yz family bifurcates off this other basic 
state as we shall demonstrate later. Chang was able to resolve both families of waves 
by using a high-order bifurcation theory which includes the simple bifurcation due to 
the interaction of the two flat-film basic states and the two Hopf bifurcations 
corresponding to the creation of the two wave families from the two basic states. 
Homoclinic bifurcations of the two families of waves, corresponding to solitary 
waves, are also found for conditions near criticality (R+O). These provide the 
amplitudespeed correlation above. Chang demonstrated that the correlations are 
favourably compared to wave data in the solitary wave regime if the waves are small 
and R is of O( l), namely where the KS equation is valid. For larger waves, one has to 
resort to the strongly nonlinear evolution equations. Chang (1989) carried out a 
higher-order amplitude expansion of the strongly nonlinear evolution equation for 
weak surface tension and also uncovered two families of travelling waves near the 
critical Reynolds number R, = 0 for a vertical film. Like the KS equation for strong 
surface tension, both culminate in solitary waves with one family travelling faster than 
the critical phase speed that is three times the average velocity (twice the interfacial 
velocity) and one slower. With this higher-amplitude resolution for weak surface 
tension, the speed-amplitude correlation from the KS equation, h-  1 = +f(c- 3), 
which applied to both solitary and shock waves in the KS limit, becomes only valid for 
shock waves. The solitary wave correlation now becomes h = -!-Kc- 3) near criticality. 
The stationary waves constructed in the above theory for R - O(1) are in good 
agreement with experimental data. However, the stability of these waves, which should 
determine how the interface evolves downstream from one stationary wave to another, 
remains unresolved, although Pumir, Manneville & Pomeau (1983) and Joo, Davis & 
Bankoff (199 1) have performed some numerical experiments concerning the time 
evolution of periodic waves for strongly nonlinear evolution equations. 

For the practically more important conditions of high Reynolds numbers, the only 
reported constructions of nonlinear stationary waves are based on a drastic ad hoc 
averaging approximation which assumes that the velocity profile is locally either flat 
for turbulent films or parabolic for laminar ones at every location. This yields an 
evolution equation, known as the averaged equation, for both the interface h and the 
local flow rate q. This simplifying approach was first introduced by Kapitza (1948) and 
some stationary waves, including near-sinusoidal and solitary ones, have been 
constructed by Shkadov (1967, 1968), Demekhin & Shkadov (1985), Hwang & Chang 
(1987), Prokopiou et al. (1991) and Trifonov & Tsvelodub (1991). Hwang & Chang and 
Prokopiou et al. demonstrate that the wave speeds of the solitary waves under 
turbulent and laminar conditions, respectively, are accurately estimated with this 
approximate theory. At large R, the equation again yields two solitary waves, the 
slower one travelling at 1.67 times the average liquid velocity. Each solitary wave is the 
termination point of a fast and a slow family of waves, quite reminiscent of the two 
families constructed analytically by Chang (1986, 1989) for thin films with R - O(1). 
Prokopiou et al. (1991) have also used this equation to show that near-sinusoidal waves 
of the slow family are unstable to disturbances twice their wavelength (subharmonic 
instability). This is consistent with Brauner & Maron’s (1983) observation that the 
waves tend to double their wavelength as they evolve from the sinusoidal region into 
the solitary region. Unfortunately, the amplitude and shape of the constructed waves 
do not resemble the observed ones at high R (see figure 5 of Prokopiou et al.). This then 
suggests that the averaging approximation may erase many stationary waves, including 
the observed ones, even though it provides a good prediction of the solitary wave 
speed. The evolution of stationary waves downstream may then be beyond the 
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description of the averaged equation and even the subharmonic mechanism suggested 
by Prokopiou et al. is in doubt. It would hence be extremely desirable to remove the 
averaging simplification. We shall show here that the averaged equation is only valid 
at low Reynolds number ( R  < 10 for water). Bach & Villadsen (1984), Kheshgi & 
Scriven (1987) and Ho & Patera (1990) have integrated the full Navier-Stokes equation 
in time and obtained at large time stationary solitary waves and sinusoidal waves that 
resemble the observed ones. However, a complete classification of all stationary waves 
at high Reynolds number and their evolution and competition have not been reported. 
We carry out such an analysis here with only a long-wave boundary-layer 
approximation and report the first satisfactory comparison to observed waves of all 
three regimes at high R. We also link the waves at high Reynolds number to the waves 
of the KS equation at low R.  Basically, the two families of waves, y1 and y2 ,  persist with 
some modification at high R although the fast family breaks into several hybrid ones 
with distinctive shapes. The observed nearly sinusoidal waves belong to the slow family 
and the solitary ones the fast family. We also carry out a linear stability analysis of 
the stationary waves with respect to three-dimensional disturbances of all wavelengths. 
Subharmonic instability of near-sinusoidal waves is confirmed. However, other 
dominant long-wave instabilities are also discovered. One wave member on y1 and a 
finite number on yz are found to yield local minima in the growth rate and are hence 
the selected quasi-stationary waves. The physical mechanisms for selecting these waves 
are explored. We also construct an evolution scenario linking these selected waves 
which explains the initial deceleration and subsequent acceleration observed by 
Stainthorp & Allen (1965). In 92, we derive the boundary-layer equation from the 
equations of motion and carry out a simple linear stability analysis that yields results 
close to those from the complete Orr-Sommerfeld equation. Some analytical results 
can be derived because of the boundary-layer approximation. In $ 3 ,  we report a most 
complete tracing of all stationary wave families and solitary waves of the KS equation 
which is the limiting version of our equation. In $4, we construct and characterize all 
stationary wave solutions of the boundary-layer equation beginning from the KS 
waves and compare them to reported wave tracings. A three-dimensional linear 
stability of the constructed waves and their physical interpretation are contained in 0 5. 
The predicted evolution scenario is satisfactory compared to literature data and a 
numerical evolution experiment. A summary is offered in $6. 

2. Boundary-layer equations and linear stability 
We consider a viscous fluid layer falling freely down an inclined plane with an 

inclination angle 8 under the influence of gravity. The waveless flat film has a thickness 
h,, the Nusselt film thickness, which is related to the mean velocity (u),  sometimes 
known as the Nusselt velocity, of the parabolic profile by ( u )  = &hi sin 8 / v .  Using 
( u )  as the characteristic velocity and h, as the characteristic length, the dimensionless 
Navier-Stokes equation becomes 

au 1 3 
at R R - i -u .vu  = - v p + - v u + - g ,  

v - u  = 0, (2) 

where u = (u, v, w) is the velocity field, R = ( u )  h,/v is the Reynolds number and 
g = (1, -cotanO,O). The coordinate system is chosen such that the upper normal of 
the inclined plane is y , x  is along the downward tangent and z is in the transverse 
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- 
R 

1 
5 

10 
50 

100 
500 

1000 

Mercury (20 "C) H,O (1 5 "C) Glycerin (20 "C) 
y = 28000 y = 2850 y = 0.18 

5s 

0.014 
0.100 
0.233 
1.670 
3.900 

27.881 
65.04 

& x 10-4 
1.2 
2.4 
3.3 
6.7 
9.1 

18.7 
25.0 

56 

0.030 
0.214 
0.501 
3.580 
8.350 

59.72 
139.3 

& x 10-3 

0.54 
1.10 
1.51 
3.12 
4.21 
8.53 

12.0 

5s 

0.755 
5.390 

12.57 
89.85 

209.7 
1499.3 
3498.0 

& 

0.341 
0.697 
0.948 
1.939 
2.638 
5.395 
7.341 

TABLE 1 .  Typical values of 6 and E for 8 = in 

direction. Let the free-surface position Ax, t) ,  where x = (x, y ,  z )  are the Cartesian 
coordinates, be defined by 

and assuming the pressure in the gas phase remains at constant value po, one obtains 
the kinematic and stress conditions at the interface y = h: 

AX, t)  = y -h(x , z ,  t )  = 0, (3) 

a jp t+u .v j -=  0, (4 a)  
[p-po-WK(h)]n , - t t jn j  = 0 ,  i , j =  1,2,3, (4 b) 

where K is the curvature at the interface, tij is the shear tensor l/R(au,/axj + auj/axi) 
and W =  n / p ( ~ ) ~ h ,  is the Weber number. The unit vector n is normal to the free 
surface. There is also the no-slip condition at the wall 

u = O  at y=O.  (5) 
Equations (lk(5) then define the full equations of motion for the falling-film problem. 
It is a problem with three dimensionless parameters: R, W and 8. It is popular amon4 
the Russian school to replace the Weber number by the Kapitza number y = cr/p$gZ 
which is only a function of the fluid properties and not the flow conditions. The 
Kapitza number can be expressed as 

y = ~ & / ( 3  sin 8);. (6 )  
It is extremely tedious to search for all solutions of the above equation in a three- 

dimensional parameter space. A considerable simplification can be achieved if we limit 
ourselves to R < 500 such that the characteristic wavelength, on the orders of 
centimetres, is much longer than h, which is no more than 2 or 3 mm. In this limit, we 
can invoke the long-wave boundary-layer approximation which neglects a/ax and a/& 
in favour of a/ay. The usual long-wave expansion with 

V + V/K, (X, 2, t )  -+ K(X, 2, t )  

can then be introduced, where K is a large parameter relating the ratio of the x and z 
characteristic scale to the y scale. It is convenient to choose 

K3 = f WR = a/pghk sin 8, (7) 
as Demekhin, Demekhin & Shkadov (1983). Hence, RWmust be a large number but 
there is no stipulation on the relative magnitude of R or W. The case of K + 1 studied 
here is commonly referred to as the strong surface tension case. It applies to water and 
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most other liquids but not glycerin for 0 9 1 (see table 1). Upon substitution, one 
obtains three new parameters: B and 

As shown in table 1, E 4 1 for most fluids with R < 500. The exception lies with low 
surface tension fluids like glycerin that have E small only for R < 5. We shall hence set 
E to zero and effectively reduce the number of parameters by one. The final equation, 
which is derived in Appendix A, is then 

au  av  -+- = 0, ax ay 

y = o :  u = v = o  (9 e)  
for the two-dimensional case where x = cotan 0 / R .  It is often convenient to replace the 
kinematic condition (9 c) at the interface by the equivalent integral form 

The three-dimensional version is 

au av aw -+-+- = 0,  ax ay aZ 

and the three-dimensional analogue of (9f) 

In all subsequent studies, we shall examine only the case of a vertical plane 
x = O(B = in) and hence the entire problem is conveniently parameterized by a single 
parameter 6. 

We examine the validity of the boundary-layer equation by comparing its linear 
stability result for the Nusselt flat-film base state to those from the Orr-Sommerfeld 
equation of the linearized version of the Navier-Stokes equation. Because of the 
boundary-layer approximation, the linear stability of large a6 can actually be studied 
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a 4  

2 

0 
-4 - 3  - 2  - 1  0 I 2 3 4 

P 
FIGURE 1. Neutral curves of the primary instability of the Nusselt flat film in the two-dimensional 

wavenumber space 01, /I. The most unstable wave is two-dimensional with /I = 0. 

analytically. This is because the outer equation, unlike the Rayleigh equation of the 
Orr-Sommerfeld equation, can now be solved in closed form. Linearizing (10) about 
the basic state (U,  V, W, h) = (3(y- ty2) ,0 ,0 ,  1) and inserting a disturbance with a 
normal mode of exp [i(ax + pz - act)], one obtains 

(1 1 4  
y =  1: $ " = - 3 ,  $ = 3 -  2 c, (1 1 b) 

y = o :  $ = $ ' = O ,  (1 1 4  

$"' - 15ia8[( U -  c) $' - U'$] = - 3i(a2 +P2)>"/a, 

where $ = -iu/a is the complex stream function. 

expected results for the neutral curve 
For small a6 at near-critical conditions (a+ 0), a routine expansion of (1 1) yields the 

co = 3 ,  
( a 2 + / 3 2 ) 2  = 18a2S, 

such that the neutral wavenumber for two-dimensional waves is 

a. = (186)t, (124 
and the most unstable disturbance is a two-dimensional one 

1 
d2 a, = -ao = (944 p, = 0. 

The critical condition for the vertical layer is then 8, = 0. Equations (12c) and (12d) 
are in agreement with the standard long-wave expansion of the Orr-Sommerfeld 
equation by Yih (1963) and Benney (1966). The results for conditions far from 
criticality, aR B 1, could only be obtained numerically because the Orr-Sommerfeld 
equation cannot be solved analytically even by matched asymptotic expansion. This is 
different for the boundary-layer equation and we offer a closed-form solution by 
solving the outer equation explicitly. For the inner region near the wall, the dominant 
terms of (1 1 a)  yield 
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R 
0.667 
3.333 
6.667 

33.33 
66.67 

333.33 
666.66 

Orr-Soinmerfeld 
(Pierson & Whitaker) Boundary layer 

8 cLnl cLC;"aX am cLCF"X 

0.00345 0.1676 0.8388 x 0.1762 0.963 9 x 
0.0247 0.4503 0.041 8 0.4646 0.04631 
0.057 5 0.6337 0.148 7 0.6426 0.1614 
0.41 I 0.7727 0.236 5 0.8060 0.241 8 
0.97 0.8432 0.1769 0.871 1 0.1784 
6.88 1.0627 0.075 58 1.1628 0.07596 

16.0 1.2079 0.051 61 1.2581 0.051 59 
TABLE 2. Linear stability for water (y = 2850) 

where p = ($acS)f and An is determined to be -(az +pz))" (1 + i)/lO a2c6p. The inner 
region near the free surface can likewise be resolved to be 

where 7 = [?a(c -:) 61; and A ,  is determined from (1 1 b) to be - 3i/2y2 but A, remains 
unknown. The outer region away from the two boundary layers, unlike the Rayleigh 
equation of the Orr-Sommerfeld equation, is described by a first-order equation which 
can be easily integrated to yield 

Matching this to the inner solution at the interface, we obtain A ,  = @(1) and from 
(1 1 b) we get the dispersion relationship 

- 3 - c .  2i - (az + /I)"))" (1 + i) (2c - 3 )  
+ 20a2c26p 5aS(2c - 3) - arctan- 

(6c - 9); 
-+- 2 

Although c must still be solved numerically from this implicit dispersion relationship, 
it is, nevertheless, much simpler than solving (11) or the Orr-Sommerfeld equation 
numerically. Care, however, must be exercised about the large-a& limit. Since the 
boundary-layer equation was derived with a long-wave expansion, the large-a8 limit is 
strictly valid for large S and small a / ~ .  For intermediate values of as, we solve (11) 
numerically by carrying out a Taylor expansion of + in y .  Three-dimensional neutral 
curves for 8 = in are plotted in figure 1. We compare the computed results for the 
maximum-growing wavenumber a, and growth rate of two-dimensional waves on 
water to Pierson & Whitaker's (1977) exact result from the full Orr-Sommerfeld 
equation in table 2. As evident, for 6~(0,16),  which corresponds to RE(O, 700) for 
water, the error in a, is no more than 6%. The error in the growth rate is more 
significant at low 6, at about 10 YO, but reduces rapidly to less than 2 % for R in excess 
of 30. The results for large 6(6 > 1.0) are in virtual agreement with the analytical 
estimate of (16). These results verify the validity of the boundary-layer equation for 
fluids in table 1 with small 6 .  As reviewed by Lin (1983), the linear prediction of a, is 
in general agreement with experimental wave data in the inception region. The 
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boundary-layer theory hence offers an accurate description of the linear inception 
region even at high Reynolds numbers. 

For nonlinear stationary waves propagating at a constant speed c, a Lagrangian 
transformation of (9) to the moving frame yields the equation for the stationary 
travelling waves on a vertical plane, 

a a 
ax aY 
-[~(u-c)]+-(uv) =- 56 

au a0 -+- = 0, 
ax ay 

? l (u - - c )dy  ax = 0, 

au 
y = h(x): - = 0, 

aY 

(174 

y = o :  u = o ,  v = o .  (17e2.f) 
We shall be interested in stationary waves with wavelength 1 = 27c/a, (h, u, v) (x) = 

(h, u, v) (x + I). As the wavenumber a approaches zero, the waves become solitary 
waves. In constructing these waves, one could assume either that all waves correspond 
to the same flow rate 

1 h  

q = iJ 1 udxdy 
0 0  

or that all of them have the same average thickness h, 

<h) = f s h d x =  0 1. 

If the constant-flux condition (18) is imposed, the average flux should be equal to the 
Nusselt velocity and q is unity identically. If the constant-thickness condition (19) is 
used, q is typically higher than unity. The two conditions yield similar but not identical 
results. The results are also mutually transformable with some effort. We choose to 
impose (19) since (h) cannot vary in time for periodic boundary conditions. 

For near-critical conditions (6+0), the neutral wavenumber a,, = (186)i of (12b) 
vanishes, suggesting a weakly nonlinear, long-wave expansion. If we impose the 
relative order that the amplitude is of third order as the inverse wavelength, as 
Nepomnyaschy (1974), Lin (1974) and Demekhin et al. (1983) have done for the full 
equation, we obtain the KS equation for the limit of vanishing 6: 

H, + 4HHc + Ht5 + H,,, = 0, (20) 
where H = :(h - l)/a:, 6 = (x- 3t) a. and 7 = a: t. Transforming (20) to a moving 
coordinate system with speed ,u (a deviation speed) and integrating once, one obtains 

where 

is the deviation flux in the moving frame obtained by invoking the constant-thickness 
condition (19) and ( ) denotes averaging over one wavelength in the scaled 6- 
coordinate. It is then clear that, for weakly nonlinear waves described by the KS 
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equation, waves tend to increase the liquid flux if the average thickness remains the 
same. This constant-thickness equation must be solved in conjunction with the 
deviation form of (19), 

( H )  = 0. (22) 
If, however, the constant-flux condition is imposed, (2 1) reduces to 

wE5E+Wg-AW+2W' = 0 

and (22) is unnecessary and no longer holds, (w) =k 0. It is easy to relate the speeds and 
wave profiles of the two approaches by comparing (23) to (21): 

h = & (8Q +p2)i (24 a) 
and 

The constant-flux equation has one less parameter and involves only one equation, 
whereas two equations, (21) and (22), must be solved for the constant-thickness 
approach and two parameters, Q and p are involved. Consequently, the former is 
typically the preferred approach (Chang 1986) for analytical estimates of the stationary 
waves. For full numerical resolution of (17), however, these advantages are lost. In 
fact, the condition of zero mean deviation thickness of (22) allows us to remove the 
zeroth harmonic of our Fourier expansion of H. Hence, (22) is trivially satisfied and 
the numerical effort is reduced. Consequently, we choose the constant-thickness 
formulation here. Relationships between the two approaches, such as (24), are difficult 
to derive for the full equation, but for small deviation flow rates Q or small mean 
deviation thickness (w) (24) is still applicable. 

There is yet a subtle difference between these two formulations in the KS limit of 
vanishing 6. Integrating (23) over a wavelength, one obtains h ( w )  = 2(w2). Since (w') 
and (w) both cannot vanish, this implies that h cannot be zero. Hence, all waves in the 
constant-flux formulation are travelling waves in the Lagrangian frame moving with 
speed 3. This is, however, not true for the constant-thickness formulation (21) and 
standing waves are then permitted, namely waves that propagate at exactly three times 
the average velocity in the laboratory frame are possible. We shall show in the next 
section that such standing waves do exist for (21) and they correspond to travelling 
waves of (23) studied in Chang (1986). It is also clear from the above argument that 
waves that travel faster (slower) than three times the average velocity have a larger 
(smaller) average film thickness than the waveless flat film in the constant-flux 
formulation. This conclusion would seem counterintuitive unless one remembers that 
the waves are not mass-carrying - they travel faster than the fluid elements. Many of 
the wave families of the full equation (17) can be traced from the stationary KS 
equation (21) or (23). Many of the wave selection mechanisms of the full system can 
also be deciphered by an analysis of the KS evolution equation (20) even when the 
analogy is not strictly correct. One valid analogy can be obtained by carrying out a 
bifurcation analysis of (23) for bifurcations of stationary solutions off the trivial 
solution w = 0 corresponding to the Nusselt flat film. Converting (23) to a dynamical 
system for (w, ws, ws6) as in Chang (1986) and analysing the three-dimensional Jacobian 
for the trivial solution, one concludes that at A = 0 (c = 3), the spectrum of the 
Jacobian contains a purely imaginary pair of eigenvaluesfi and a simple zero. The 
former corresponds to a Hopf bifurcation which yields a family of periodic stationary 
waves with a wavenumber that approaches unity at A = 0. The Hopf bifurcation is 
supercritical with respect to - c and hence the periodic stationary wave family, which 
bifurcates off the Nusselt flat film has a speed bounded above by c = 3 that decreases 

15-2 
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with increasing amplitude and, as it turns out from the Hopf analysis, a wavenumber 
that also decreases with increasing amplitude. This is the origin of the slow y1 family. 
The unit wave number at h = 0 corresponds to the neutral wavenumber a. = 1 of the 
trivial basic state in (20). At larger 6, a slow y1 family of stationary periodic waves 
will continue to bifurcate supercritically from the Nusselt flat film with the neutral 
wavenumber a,, and its wavenumber ranges continuously within the interval 
(0, a, M (186);). The amplitude of this wave family approaches zero as the wavenumber 
approaches a, and hence the waves near the neutral curve are the nearly sinusoidal 
ones characteristic of small-amplitude periodic solutions near a Hopf bifurcation 
point. The zero eigenvalue of the Jacobian for (23) at h = 0 corresponds to a simple 
bifurcation that yields a new flat-film solution known as the ‘conjugate’ solution. As 
shown in the next section, the fast yz  family bifurcates off this conjugate solution. The 
Hopf simple bifurcation can be analysed with a high-order bifurcation theory (Chang 
1986, 1989) which also yields information about the solitary wave limits of the two 
families. A detailed weakly nonlinear (bifurcation) analysis of how stationary periodic 
solutions bifurcate off the neutral curve can be found in the earlier work of Cheng & 
Chang (1990, 1992a, b). The technique is different from the classical Stuart-Landau 
formalism which carries out the expansion about the ‘nose’ of the neutral curve and 
is hence strictly valid for near-critical conditions. The neutral curve of the falling film 
does not have a parabolic ‘nose’ and thus requires a modified treatment. 

3. Stationary waves of the Kuramoto-Sivashinsky equation and the origin 
of fast waves 

We shall trace all stationary waves of the boundary-layer equation (17), in 
conjunction with the constant-thickness condition (19), as a function of 6 and I. (The 
speed c is determined by the periodicity condition and is not a free parameter.) The 
experimentally observed waves will be shown to correspond to two wave families that 
trace their origins to the primary standing and travelling waves of the KS equation (21) 
at 6 =  0. The stationary waves of the KS equation (21) have been reported by 
Tsvelodub & Trifonov (1989), Kevrekides, Nicolaenko & Scovel(l990) and Demekhin, 
Tokarev & Shkadov (1991). However, we shall examine some unreported fine 
structures of the solutions that will be pertinent to the solutions of the boundary-layer 
equation at finite 6. We first observe the symmetry of the KS equations (21) and (23) 
with respect to the transformation 

or 

This property is sometimes known as reversibility and it implies that for every 
stationary wave that propagates in one direction, there is negative twin with an 
inverted and reflected profile (w+- w or H+- H and [+-() propagating with the 
same speed but in opposite direction ( A  + - h or p + -1.) relative to the critical speed 
of (12a). We shall distinguish the backward ones (negative solitary waves) from the 
forward ones (positive solitary waves) by a negative subscript (e.g. C-, and Cl). 

The reversible symmetry (25 b) of the constant-flux formulation is especially 
intriguing. In Chang’s (1989) analysis of a weakly nonlinear evolution equation of 
higher-order than (20) of the falling film and in other analyses of similar equations at 
different conditions (Chang 1986; Prokopiou et al. 1991), two families of waves were 
found with the constant flux-condition: y1 with a negative deviation speed A, < 0 and 
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y z  with a positive speed A, > 0. Moreover, the families are symmetric about h = 0, 
namely A, = -A,, for near-critical conditions. The origin of this symmetry can be seen 
in (23). This constant-flux condition actually allows two flat-film solutions: w1 = 0 and 
w, = +A. The former is simply the deviation form of the Nusselt flat film while w, is a 
unique 'conjugate' solution that arises because, in a Lagrangian frame, there is another 
flat-film solution that can sustain the same flow rate. Returning to (17), it is clear that 
the velocity profile for a flat film is u = 3y(h-+y) and inserting this into the integral of 
(17), one obtains h(c-h2) = c- 1. Hence, for c larger than %, which is always true, 
a conjugate flat-film solution exists in addition to h = 1, 

h=$[-1+(4~-3)+]- 1+$(~-3), 

which is exactly w2 = $A after the proper transformations. This additional flat-film 
solution whose thickness is dependent on the speed of the moving frame is also seen 
in the drag-out problem in coating flow (Tuck 1983). The existence of a conjugate 
solution is essential since shock-like stationary solutions, which are observed in falling 
films (Alekseenko, Nakoryakov & Pokusaev 1985) and other coating flows, require 
two flat-film solutions in the moving frame. Linearizing (20) about the conjugate 
solution, one finds that waves that appear on this conjugate flat film travel at a speed 
different by a factor -2h from those on the Nusselt flat film. Hence, for every slow 
wave bifurcating from the Nusselt flat film with speed - lAl, one expects a symmetric 
fast wave with speed IAl from the conjugate flat film. This is also seen in the reversibility 
condition (25b) for the KS equation. We recall that standing waves are not permissible 
in the constant-flux formulation. If one transforms the two travelling wave families, 
with symmetric speeds about A = 0 or c = 3, of the constant-flux formulation to the 
constant-thickness formulation by (24), these two families collapse to a single standing 
wave family for a close to ao. There is, however, a pitchfork bifurcation at smaller a 
which again gives rise to two travelling wave families with positive and negative ,u (see 
figures 2 and 5). Hence, although the conjugate flat-film basic state does not exist for 
the constant thickness for obvious reasons, the two symmetric families of travelling 
waves that appear in this formulation can still be traced back to the existence of two 
flat-film basic states of the constant-flux formulation. The origin of the fast yz wave 
family via a bifurcation off the conjugate flat-film solution is the preferred physical 
explanation. Both families persist at larger 6 in both formulations. 

In figure 2, we depict a more detailed version of the stationary wave solution 
branches reported in Demekhin et al. (1991). There is a myriad of infinite wave 
families. Owing to the symmetry of (21), a mirror image of figure 2 exists for ,u negative. 
However, only a few families are pertinent to the boundary-layer equation. The 
primary branch S is a standing wave solution for (21) with ,u = 0. It hence represents 
a family of waves that travel at a constant speed equal to the critical speed co = 3 of 
(12a). It is a travelling wave family for the constant-flux equation (23) with non-zero 
h except at its bifurcation point (A,  (ala,)) = (0,l) where a is the wavenumber in the 
original x-coordinate and not the normalized (-coordinate of (20). A twin branch S-, 
with speed -,u exists by virtue of (25). For both families, the wavenumber lies within 
the bound (a/a,)~[1,0.49775]. At 0.49775, the S branch of (21) coalesces with a 
second branch S(') which bifurcated from (a/ao)  = +. The S(') branch is identical to S 
except that two waves are contained in one wavelength which is twice as long as the 
corresponding one on S. Likewise, Sn) branches bifurcate from (a/.,) = l / n  and they 
are all identical to S except that n units exist in one wavelength. We first focus on S. 
All along the S branch, the waves are nearly sinusoidal with longer waves having a 
larger second-harmonic content and hence a steeper front edge (see figure 3). These 
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FIGURE 2. Stationary solution branches of the Kuramoto-Sivashinsky equation. The C, families 
bifurcate from the circles at the top half of the diagram. New solutions (tori) bifurcate from C, at 
the marked points. 

waves are the ones near the neutral curve and they are the ones amenable to the 
Stuart-Landau normal mode expansion formalism suggested by Benney (1 966) and 
subsequently carried out by Gjevik (1970), Lin (1974), Nakaya (1975) and Chang 
(1989). However, as pointed out by Chang (1989), waves longer than twice 27c/a0 
contain many Fourier modes that cannot be easily resolved with a normal mode 
expansion. These waves are contained in two families of secondary branches. One 
family consist of the S, branches that come off the S(,) branches. As is evident in figure 
3, at the bifurcation point on S@), the waves on S, are still quite sinusoidal but 
subsequent ones develop very rich structure with a broad Fourier content. Some of 
them (S2, S,, S,, S,, etc.) extend to a = 0 and terminate at solitary waves. Unlike the S(,) 
branches, these branches do not resemble each other. A subset of the S, family are the 
branches SIA,SIB, etc. that were not reported by Demekhin et al. (1991). A second 
family of waves consists of C, and C i  branches in figure 2. In contrast to the S(,) and 
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S, families, these are travelling wave solutions of (21) with c in excess of 3.  As shown 
in figure 4, these travelling waves have unique solitary wave shapes that we have 
classified in a different report (Chang, Demekhin & Kopelevich 1993). The primary one 
is C,,, which will also be called C,, bifurcates off S at (a/.,) = 0.5547. This forwarding 
propagating branch is the only important branch in the C, family that will survive 
at finite 6. In contrast, all inverted ones C-, participate in the pertinent wave branches 
at finite 6. This C, branch has been studied by Tsvelodub (1980) and Armbruster, 
Guckenheimer & Holmes (1988) and, in their formulation, it corresponds to a 
travelling wave which is annihilated at a homoclinic bifurcation. The homoclinic 
bifurcation corresponds to an infinitely long solitary wave here as the C, branch 
extends to vanishing a in figure 2. As evident in figure 3, both the S, and C, families 
and their inverted twins with negative ,u consist of waves with a large band of Fourier 
modes. Chang (1986, 1989) suggested that these waves can be described by elliptic 
functions provided by an analysis in the solitary (a  + 0) limit. For the constant-flux 
formulation, the homoclinic orbit corresponding to the solitary wave can be 
approximated by a heteroclinic cycle joining the fixed point corresponding to the 
Nusselt flat film w, = 0 to the conjugate flat film w, = $A. Hence, an estimate of the 
amplitude of the solitary wave is simply w,,, = :A. However, by multiplying (23) by 
w and integrating from 6 = - co to + 00, one obtains 

co 
w2(2w - A) d6 = 0, s_, 

which stipulates that wmax > $A, and the above estimate must be considered as a tight 
lower bound of the amplitude of a solitary wave in the constant-flux formulation. In 
the solitary wave limit, the deviation flux Q = ( 2 H 2 )  approaches zero for the constant- 
thickness formulation in the limit of vanishing amplitude. Consequently, (24) suggests 
that all solitary waves of the constant-thickness formulation of the KS equation can 
also be approximated by the amplitudespeed correlation H,,, = i,u as ,u and H,,, 
approach zero. This is confirmed to within our numerical accuracy in the solitary wave 
limits of the C, branches in figure 4, which also shows that H,,, = +,.u is a lower bound 
on amplitude, albeit a tight lower bound. This, of course, also ensures agreement with 
the C-, families by the symmetry argument. The only branches of importance at finite 
6 are S, C,, C- ,  and the S,,, SIB, S,, series. With finite 6, the reversibility symmetry is 
broken and waves are not exactly symmetric about ,.u = h = 0 or c = 3. However, the 
S family and the C-, family coalesce to form the slow y, family with a negative solitary 
wave limit, and C, and S interact to form a fast yz family with a positive solitary wave 
limit (see figure 5). Since the S family of standing waves correspond to travelling waves 
in the constant-flux formulation, this division into y1 and y, travelling wave families 
was already in place at 6 = 0 for that formulation. At larger 8, interactions with the 
other standing and travelling wave branches lead to hybrid branches of yz. Otherwise, 
the division of wave families into the slow and fast y1 and y, families remains intact. 
These two families of stationary waves share a common feature: their amplitude 
increases with their wavelength such that the solitary wave limit of each family is the 
largest wave. In fact, owing to symmetry (25), while the solitary wave limit of yz 
(depicted as C, in figure 4) resembles the observed solitary wave, the solitary wave limit 
of y1 is an inverted version of C ,  (negative solitary wave) and is not observed 
experimentally. Because the wave amplitude is small only for short waves on y1 near 
the neutral wavenumber a,, the weakly nonlinear Stuart-Landau formalism and the 
weakly nonlinear evolution equations like the KS equation are strictly applicable for 
these short waves on yl .  They are typically invalid for the y, family of fast waves except 
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FIGURE 4. Comparison between the amplitude-speed correlation for solitary wave limits of the C ,  
branches and Chang’s analytical estimate. The higher C ,  and C-, solitary waves are to the right of 
figure 2 .  
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for near critical conditions when the wave amplitude on both families is small. Even 
then, the classical Stuart-Landau formalism must be replaced by high-order bifurcation 
theories (Chang 1989). 

4. Stationary waves of the boundary-layer equation 
Unlike the limiting case of vanishing S for the KS equation, solution of the 

boundary-layer equation is considerably more difficult because of the need to resolve 
the flow field under the film and to track the free surface h(x). Bach & Villadsen (1984) 
have used a Lagrangian finite-element formulation to track the free surface and less 
than three elements in y to resolve the flow field. However, a Lagrangian formulation 
requires a rezoning procedure to untangle the convoluted meshes and is hence difficult 
to implement at high Reynolds number on S when more y-elements are required. 
Kheshgi & Scriven (1987) and Ho & Patera (1990) use a different approach, where the 
Lagrangian formulation is applied only in the y-direction to allow accurate front 
tracing without mesh entanglement. We shall use the same mixed Lagrangian-Euler 
method here. However, because the third-derivative curvature term h,,, that appears 
in our boundary-layer equation is numerically undesirable, we do not apply a direct 
finite-element decomposition. Instead, we divide the film into N layers in the y-  
direction and by manipulating the projected equations, eliminate the h,,, term from all 
but one equation. The decomposition in the x-direction is a spectral Fourier expansion. 
The result of this mixed Euler-Lagrangian and spectral-element formulation is that the 
exponential convergence (with respect to mode number) of the spectral method is 
combined with the numerical advantages of the finite-element method such as the 
elimination of the undesirable h,,, term, higher-order bases that mimic the averaged 
equation formulation and a narrowbanded projected differential operator, all of which 
facilitate the iteration step. With this formulation, this difficult free-surface problem 
requires about three to seven layers to achieve convergence. This implies only a factor 
of 10 increase in the number of equations compared to the KS equation. However, even 
with these simplifications, a systematic construction of all stationary waves and a 
detailed stability analysis of these waves remain numerically impossible for the full 
equations of motion. This is why the boundary-layer approximation is invoked here. 
If the full Navier-Stokes equation is used, the strong nonlinearities in h at the interface 
and the flow field will render the solution considerably more difficult, especially during 
the Newton iteration step. Because of the numerous tricks involved in our numerical 
formulation, we sketch in Appendix B our numerical treatment of the boundary-layer 
equations in (17). 

We note that the numerical formulation in Appendix B with quadratic polynomial 
expansion at every element reduces to the averaged equation if only one element is 
used ( N =  1). This is one reason for using the simple expansion at every layer. 
Straightforward calculation shows that in this leading-order approximation 

(26) 
is obtained. This equation must be solved in conjunction with the constant-thickness 
condition (19). Stationary waves of this averaged equation have been studied by 
Shkadov (1967, 1968), Bunov, Demekhin & Shkadov (1984), Demekhin & Shkadov 
(1985) and Trifonov & Tsvelodub (1985, 1991). All our stationary wave branches 
obtained in the full equation (17) are in quantitative and qualitative agreement with the 
stationary wave solutions of (34) for S < 0.06. Beyond this value, considerable 
difference is seen. The unique bifurcation sequence of yz  in figure 5 is notably missing 

h3h"' + S[6(q - c ) ~  - c2h2] h' + [h3 - - c(h - l)] = 0 
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FIGURE 5. Schematic depicting the bifurcation sequence as S increases. The y1 family survives intact. 
It consists of short, near-sinusoidal waves for (a/.,) + 1 and a one-hollow inverted solitary wave for 
(./ao) + 0. The y r )  families, born by successive coalescence of the yz branch with y, in a pinching 
bifurcation, are detached from the neutral wavenumber (ala,) = 1 and do not possess near- 
sinusoidal waves. The yz branch ends as a one-hump positive solitary wave while $) ends as an 
( n +  1) hollow negative solitary wave. However, the waves away from the solitary wave limit 
resemble positive solitary waves (see figure 7). 
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FIGURE 6. The imperfect bifurcations that occur at S = 0' which coalesce several branches of the KS 
equation to form the new y, branches. Only the yz branch approaches a one-hump positive solitary 
wave limit as (a/.,) approaches zero. The y1 family ends as a one-hollow negative solitary wave and 
the y, families (n 3)  culminate in an n - 2 hollow negative solitary wave, 

from the averaged equation. This then implies that the averaging is strictly valid for 
low Reynolds numbers, R < 10 for water, as evident from table 1. 

We first sketch the changes in the solution structure qualitatively. If plotted on the 
c-a parameter space, the stationary wave solutions of the KS equation (21) in figures 
2 and 3 collapse into a very simple structure. All the Sn) families can now be 
represented by the primary S branch which spans (a/ao) E (1,0.497 75) along the c = 3 
line in figure 5(a). The S, branches appear at lower wavenumbers but they do not 
participate in the creation of important branches at finite 6 and hence are omitted in 
figure 5.  The remaining standing waves S,,, S,,, S,, etc. are also marked in figure 5. 
They are drawn disjoint to show that the subsequent bifurcations will separate them. 
We note that since these branches bifurcate subcritically with respect to a-' before 
turning around, each point on the indicated segments may represent two waves. The 
primary travelling waves C,  and C-, that bifurcate from S and its inverted counterpart 
are also shown in figure 5 as a pitchfork bifurcation with speeds in excess of and less 
than 3, respectively. For a nonzero 6, the pitchfork undergoes an imperfect bifurcation 
such that two travelling wave branches, y1 and y2, are born as shown in figure 5(a). 
Likewise the C-, branches coalesce with the S, branches to form y3,  y,, ys etc. for 
S =k 0. The C, branches also give rise to new solutions but they will not participate in 
the future evolution of the solution branches. The only pertinent branches will be 
shown to be yn for 6 =k 0. From the wave profiles in figure 6, it is clear that only y2 
terminates at a = 0 with a positive solitary wave. The remaining branches all culminate 
in an inverted solitary wave with a hollow instead of a hump. The branch yz is clearly 
faster than the critical linear speed co = 3 while the other branches are either slower or 
close to 3. This relative speed with respect to 3 will change as 6 increases but yz remains 
the fastest branch. It should also be pointed out that y3, y,, y5, etc. retain the topologies 
of C2, C3, C-, etc. and exhibit in the solitary wave limit two hollows, three hollows, 
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FIGUFCE 7(a) .  For caption see p. 455. 

etc. (Chang et al. 1993). The actual profiles of these branches at low S are shown in 
figure 6. 

The above bifurcation features for small 6 are consistent with those exhibited by the 
averaged equation (26). However, for S > 0.06, the y2 branch begins to wrinkle as y 3  
and y4 move towards it. This and all subsequent evolution is distinct from the averaged 
equation. We also note that for S > 0.06, the velocity profile of the waves definitely 
deviates from the parabolic profile assumed in the averaged equation. At ST z 0.09, the 
turning point of y3, originating from the imperfect bifurcation at 6 = 0, coalesces with 
a turning point of y2 to yield an isolated branch y i  in a unique ‘pinching’ isola point. 
As shown in figure 5 ,  this pinching occurs successively as 6 increases as yz coalesces 
with y4, y5, etc. to yield y i ,  y r ,  respectively. The 7; branch is born at S x 0.15 as shown 
in the wave profiles of figure 7. The y p )  branches resemble their mother branches 
C-(n+l) of the KS equation with (n + 1) hollows in the solitary wave limit (see figure 4). 
However, prior to the solitary wave limit, they can take on shapes that resemble a 
positive solitary wave with one big hump as the small hollows resemble capillary bow 
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FIGURE 7(b). For caption see facing page. 

waves. In the limit of infinite 6, the original yz branch has given rise to an infinite family 
of these yp )  branches. In figure 8, the actual computed solution branches are shown. 
It is seen that the symmetry about c = 3 of the KS equation is broken. The yz family 
increases in amplitude and speed as 6 increases much more than the y1 family. This is 
also evident in figure 7 which shows the positive near-solitary waves of yz are much 
larger and much faster in absolute deviation speed from 3 than their negative solitary 
wave counterparts on yl.  

We note that the periodic waves in figure 6 correspond to closed trajectories in 
the phase space of (h, h,, h.J. In the solitary wave limit (a+ 0), these limit cycles 
approach a fixed point corresponding to the Nusselt flat film (h, h,, h,.) = (1,0,0). 
They hence approach a homoclinic orbit connected to the fixed point whose 
eigenspectrum contains one real eigenvalue and a pair of complex conjugates. 
All stationary wave branches in our study at finite 6 approach homoclinicity and 
hence have a solitary wave limit. An intriguing property of dynamical systems that 
possess homoclinic orbits linked to a hyperbolic fixed point with a real and a complex 
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FIGURE 7. Wave profiles and streamlines below the interface of waves on y1 and y(zn) for 
(a) S = 0.062 and (b, c) 0.27. 

conjugate pair of eigenvalues is that bifurcations near homoclinicity can be qualitatively 
discerned with information on the eigenspectrum of the fixed point only. We can then 
use the elegant theorem of Sil'nikov to explain the pronounced wrinkling of the yz 
branch (and the weaker wrinkling of the y1 branch) in figure 8. Each wrinkle 
corresponds to a saddle node bifurcation of the limit-cycle solution branch as it 
approaches homoclinicity. (See Chang e f  al. 1993 for a more detailed discussion on a 
related problem.) In all cases studied here, the flat-film fixed point corresponding to the 
KS equation in (21) or (23) or the averaged equation (26) for c > 3 all yield one real 
eigenvalue g1 and one complex conjugate pair with a real part C T ~ .  The signs on g1 and 
'7, are different and are dependent on whether the positive or solitary waves are 
involved. The eigenvalues are responsible for the wiggling near the fixed point in the 
phase space and the capillary bow waves of the real wave profile, and the real 
eigenvalue for the gentle slope on the other side of the solitary waves. One also reaches 
the same conclusion regarding the spectrum of the ' fixed point' corresponding to the 
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FIGURE 8. Actual computed wave branches for 8 = 0.062, 0.1, 0.15 and 0.27 and comparison to the 
linear dispersion curve. The fastest growing linear wave a, and the most stable waves on the wave 
branches are represented by stars, circles and blackened segments in some figures. The wave 
transitions are indicated in the first figure. 

full boundary-layer equation (17) at x --f & co. According to Sil’nikov’s theorem 
(proven in more detail by Glendinning & Sparrow 1984), if ~ c r z / c r l ~  is less than unity, 
one expects a periodic orbit to undergo an infinite sequence of saddle node bifurcations 
with increasing period as it approaches the homoclinic orbit in the parameter space. 
The distance between two adjacent saddle nodes also decreases monotonically as the 
periodic solution branch winds towards homoclinicity. Since a periodic orbit 
corresponds to a periodic wave here, the saddle node bifurcations of the periodic 
solution branch are exactly the wrinkles seen on y1 and yz as the solitary wave limit is 
approached. We have found lg2/crll to be less than unity in all of our calculations and 
the wrinkles are hence expected. 

Several comparisons to earlier nonlinear analyses can be made here. We first note 
that, at large 6, the solitary wave of the slowest branch yl, approaches a speed of about 
1.5 ( u )  which is close to the 1.67 (u) predicted by Prokopiou et al. (1991) using the 
averaged equation. This shows that the averaged equation may be reasonably accurate 
in the estimate of the wave speed of the slowest solitary wave on the y1 branch even 
though the local velocity profile beneath the hump and the bow waves is far from 
parabolic for 6 in excess of 0.06. The averaged equation fails to describe yz and its 
hybrid families y p )  completely. The wave profiles of some of the branches are shown 
in figure 7. We note that, for S in excess of say 0.1, the only near-sinusoidal waves 
appear on y l .  Even the shortest waves on the y p )  families are much longer than the 
near-sinusoidal ones on y1 and they possess wave profiles with large Fourier contents. 
This implies that for moderate 6 and beyond, the observed near-sinusoidal waves just 
beyond the inception region must all lie on the slower y1 branch while the solitary 
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waves that evolve downstream lie on the faster y2 and y r )  branches. This scenario will 
be confirmed in the next section and it explains the initial deceleration of waves out of 
the inception region and the subsequent acceleration as they evolve from the near- 
sinusoidal regime into the solitary wave region observed by Stainthorp & Allen (1965). 

In comparing our results to experimental wave profiles, we shall sometimes select a 
wave of the same wavelength I = 2n/a as the measured one for a given S and compare 
the wave speeds c and wave profiles h(x). In some cases, only the wave period, T = l /c ,  
is given on a strip chart and we shall then compare the wave period instead of c. If the 
wave speed c is measured accurately, we shall locate a wave of the same speed and 
compare 1 or T and h(x). Finally, the Reynolds number ( R )  of most reported data is 
based on the true flow rates for films with waves, which is not identical to our R based 
on the flat film h,. An iteration i s  then necessary to compute q of (18) and relate the 
two Reynolds numbers. For a given wave profile with wavelength 1 measured at a 
specific ( R ) ,  we begin by assuming ( R )  = R and obtain S and ct by the following 
formulae : 

s = 3 f 5 - i y - f ~ Y ,  K = 3-fyiR-9, a = 2 n ~ h ~ / l .  
After completing the numerical calculation for the given 6 and a, we obtain an 
improved estimate of R by setting 

Typically, three iterations suffice to yield an accurate estimate of R. 
In figure 9, we compare our computed wave tracings to the experimental ones of 

Nakoryakov et al. (1985) of the same period T a t  various ( R ) .  The computed values 
of 6, oc and c are shown in table 3 along with the wave family that the wave profile 
belongs to. In some cases, two waves on different families, y2 and y;, have the same 
wavelength as the measured one. It is clear that the wave on yz  is always the selected 
one. All waves were measured in the solitary regime and all of them appear on the 
positive one-hump branch y z  or on segments of the y; branch which resemble a one or 
two hump solitary wave. (The yi family eventually evolves towards a negative solitary 
wave with two hollows as evident in figure 9.) In figure 10, we compare our results 
to the only water wave tracing, offered by Stainthorp & Allen (1965). It was taken at 
5 cm below the distributor and corresponds to the spatial station at the beginning of 
the acceleration stage from near-sinusoidal waves to solitary waves. Since the speed of 
the profile was reported at c = 0.22 m/s at ( R )  = 15, we shall locate waves of the same 
speed. Two waves, one on y1 and the other on yi, are found to have this wave speed. 
The one on y1 is slightly longer with 1 = 1.10 cm and the one on yi is 1.03 cm long. 
Both are in satisfactory agreement with the value of l.0f0.2 cm estimated from the 
wave tracing (figure 9 of their paper). However, on closer examination of the detailed 
wave shapes, it is clear that the y; wave is selected. This again confirms that the 
acceleration beginning at 5 cm from the distributor signals the departure from the 
nearly sinusoidal y1 family and the approach towards waves on the y r )  families. 
Finally, in figure 11, we offer comparison to the classical photographs of Kapitza 
(1948) and Kapitza & Kapitza (1949). The parameters are listed in table 4. Good 
agreement is again evident. Whenever there is a choice between a wave on the y2 family 
and one on yi, the y2 wave is always the chosen one. The somewhat lower amplitude 
of the photographed waves can be due to distortion by the tube curvature during the 
imaging. 

The above favourable comparison to measured profiles verifies the boundary-layer 
approximation. The only remaining task is then to decipher why specific waves on 

R = (R) /q .  
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certain branches are selected. We expect this selection mechanism to be related to the 
relative stability of the waves with respect to two-dimensional and three-dimensional 
disturbances of all wavelengths. The latter disturbance should also be more dominant 
on the y p )  families since the two-dimensional solitary waves break up into three- 
dimensional non-stationary waves downstream. We shall confirm these speculations 
with a stability analysis in the next section. 
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FIGURE 9. Comparison to the wave data of Nakoryakov et al. (1985) for the same wave period. The 
wave period and speeds in ms and m/s are indicated. The wave parameters are listed in table 3. All 
are near solitary waves on yz and 7;. (a) ( R )  = 10, (b) 18.8, (c)  31. 

(a) (R) = 10 (water) (b) (R) = 18.8 (water) 
Wave Wave 

6 a c family 6 a c family 

(i) 0.09205 0.3673 2.8015 y; (i) 0.1484 0.3210 3.5026 ya 
0.08208 0.3661 3.4412 yz (ii) 0.1448 0.2663 3.7606 yz 

(ii) 0.08273 0.4299 3.2877 yz (iii) 0.1380 0.1650 4.4211 y z  
(iii) 0.07476 0.1628 4.5233 yz  

(c) ( R )  = 31 (water) 
Wave 

6 a c family 
(i) 0.2301 0.1218 4.7418 yz 
(ii) 0.2465 0.2041 3.7389 y7 

0.3122 0.2085 2.6643 yz 
(iii) 0.2567 0.2942 3.2867 yz 

TABLE 3. Wave parameters for figure 9 

5. Stability and selection of stationary waves 
One expects the waves exiting the inception region to be monochromatic waves with 

the fastest growing wavenumber a,. However, slowly evolving finite-amplitude effects 
then stipulate that a subset of the stationary waves we constructed be selected 
successively downstream. Since the first stationary waves are short, near-sinusoidal 
ones and the only wave family with short-wave members is the slow family y1 (see figure 
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FIGURE 10. Comparison to the tracing of Stainthorp & Allen of the same speed measured at the 
boundary between the near-sinusoidal and the solitary wave regimes. The height is normalized by h, 
and the length by 1 1 2 ~ .  

8), we expect a short member of y1 to be selected first. This would then imply a 
deceleration of the wave speed immediately beyond inception which is consistent with 
the observation of Stainthorp & Allen. Further downstream, near solitary waves 
resembling the solitary waves on yz and not those on y1 are observed. We hence expect 
the waves to evolve towards the solitary end of the fast family yz. This is again 
consistent with Stainthorp & Allen's observation of acceleration towards the solitary 
wave regime. We shall confirm and quantify these observations here by subjecting the 
stationary waves to three-dimensional disturbances of all wavelengths. 

That the most stable or least unstable waves are selected in a particular wave family 
has been speculated since the first paper of Kapitza (1948). He suggested that a wave 
with the minimum average energy dissipation, 

where ( } denotes averaging over a wavelength, is the observed one. This argument 
originates from an inertialless energy stability analysis of (9) and one expects it to be 
valid only at low 6 (or R) since inertia is surely also important at higher 6. However, 
this dissipation criterion will be shown to be quite accurate at low 6 and it offers a very 
physical selection criterion in this limit. At low 6, a, is small and if one imposes the 
same small-amplitude, long-wave expansion carried out for the KS equation, it can be 
shown that 

th/aY - - 3 ( ~ -  h) 
such that E - - 3(h3)  
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Q 
Plates (cm2/s) 

6 0.084 
7 0.097 
8 0.118 
9 0.137 

10 0.156 
11 0.201 
12 0.232 
19 0.097 
20a 0.230 
20b 0.230 
21 0.156 

1 
( R )  (cm) R 4 s U 

7.368 1 6.850 1.076 0.0627 0.639 
7.748 0.89 8.543 1.103 0.0725 0.728 

10.361 0.86 9.196 1.127 0.0898 0.767 
12.020 0.82 10.488 1.146 0.1055 0.817 
13.684 0.88 11.903 1.150 0.1232 0.772 
17.629 0.80 14.949 1.179 0.1628 0.871 
20.350 0.85 17.288 1.177 0.1944 0.833 
8.521 2.46 7.348 1.1597 0.0682 0.262 

20.178 2.40 14.748 1.368 0.1600 0.290 
20.173 2.40 17.159 1.176 0.1926 0.295 
13.684 1.31 11.642 1.175 0.1199 0.517 

TABLE 4. Kapitza’s data for water in figure 11 

Exp. 
C 

( W s )  
17.2 
16.3 
17.7 
18.2 
18.6 
21.7 
23.2 
21.6 
31.5 
31.5 
24.4 

Theory 

(cm/s) Family 
15.4 y1 
16.3 y1 
17.7 y1 
18.8 y1 
19.6 y1 
21.9 y1 
23.0 y1 

C 

2.1 Yz 

22.1 yz 

33.2 Y$ 
28.4 y2 

Since ( H 2 )  corresponds to the deviation flux for a constant-thickness formulation, 
(27b) implies that at small amplitude and 6, the stationary wave selected among waves 
of the same average thickness is one with the highest flow rate. Shkadov (1968) also 
arrived at the above conclusion by subjecting the y1 family of the averaged equation 
to an elaborate two-dimensional sideband stability analysis. However, owing to the 
limitation of the averaged equation, he concluded that these waves with the maximum 
flow rates are stable to two-dimensional disturbances. We shall show that, for 
6 < 0.037, Kapitza’s dissipation criterion (27a) offers an excellent estimate of the least 
unstable wave on y1 which is, nevertheless, unstable to two-dimensional disturbances. 
The conclusion that the wave with the highest dissipation rate also carries the highest 
flux in criterion (27b) was derived with a small-amplitude expansion and is expected to 
be valid only for small-amplitude waves like the short members of the y1 family. Since 
the yz family begins with large-amplitude waves, (27 b) is not expected to hold for this 
fast family but the full criterion (27a) will be shown to remain as a good estimate. 
Cheng & Chang (1992a) have subjected the y1 family of the KS equation (with the 
constant-flux formulation) to two-dimensional and three-dimensional sideband 
disturbances and concluded that a band of short waves next to the neutral curve a, are 
unstable to two-dimensional disturbances while the ones close to the maximum- 
growing mode a, are unstable to three-dimensional disturbances. There is a window 
of waves stable to all disturbances in between. The first result corrects the conclusion 
of the first attempt on finite-amplitude two-dimensional sideband instability by Lin 
(1974). The results by Nepomnyaschy (1974) for the S family of the KS equation 
suggest that even the long waves on y1 are unstable to two-dimensional sideband 
instability such that a narrow window of waves stable to sideband disturbances exists. 
However, in the solitary wave limit, one expects the stability of the finite-amplitude 
waves to be identical to that of a flat-film, namely unstable to all two-dimensional 
disturbances with wavenumbers within (0, a,). Prokopiou et al. (1991) subjected the y1 
waves of the averaged equation to subharmonic instability and found that a band of 
waves close to the neutral curve are also unstable to two-dimensional subharmonic 
disturbances. These analytical results then suggest that y1 waves close to the neutral 
curve are unstable to either two-dimensional subharmonic or sideband disturbances. 
Near solitary waves are unstable to the same two-dimensional disturbances of the flat 
film. The intermediate waves are more susceptible to three-dimensional disturbances. 
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If there is any window of stable waves, it should exist only if these instability regions 
do not overlap in the intermediate region near a,. From the result of Cheng & Chang 
(1992a), for the KS equation, this stable window should exist only for vanishingly 
small 6. Demekhin & Kaplan (1989) confirmed this numerically and showed that at the 
KS limit of 6 = 0, the stable band is within (a/a,)~(0.77, 0.84) which was first 
suggested by Nepomnyaschy (1974). Beyond 6 = 0.037, our numerical result below 
indicates that this stable window no longer exists. The entire y1 family is hence 
unstable. Nevertheless, one expects the existence of a least unstable member of the y1 
family in the intermediate a range and it should be most susceptible to three- 
dimensional disturbances from the earlier results. There have been no prior stability 
study of the yz family of fast waves. 

Linearizing (10) about the stationary solution (u,u, h) of (17) and introducing the 
disturbance vector (ti(x, y ) ,  6(x, y) ,  G(x, y ) ,  h(x)) exp (iavx + ipz + apt) where the hat 
variables have the same wavelength as the stationary waves and are hence 1 = 27c/a- 
periodic in x, v is a real number between (-8,;) to span all nth subharmonics of a,p 
is the transverse wavenumber and ap is the complex growth rate, one obtains 

a a 
ax aY 

apzi + - (2u - c) zi + iavzi(2u - c) + - (u6 + uzi) + i@C 

= L[(A+iav)  3 h-/3'(h,+iavh)+le] (28a) 

56 dx 3 a y  

a a 
ax aY 

apt4 +-((u- c) G+iavG(u- c) +- (uti,) 

We note that the introduced disturbances correspond to constant-thickness per- 
turbations. It is not clear whether the stability of the waves to such disturbances is the 
same as their stability to constant-flux disturbances. In Poiseuille flow, for example, 
there are subtle differences in the stability with respect to these two disturbances, The 
stability of the stationary solution (u, u,  h) is then determined by the growth rate apR 
where pR is the real part of p. Since the transformation v+-v simply yields the 
conjugate equation, we can restrict the bound of v to (0,;). We decompose h(x) into 
several layers as in Appendix B and carry out a Legendre expansion of the deviation 
variables within each layer. Taking inner products with the Legendre polynomials in 
a Galerkin-element formulation then yields the projected equation in the y-direction. 
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FIGURE 12(a). For caption see facing page. 

Both zeroth and first derivatives are guaranteed to be continuous at the layer 
boundaries as before. Fourier expansion is then carried out in the x-direction. The end 
result is a generalized eigenvalue problem for complex matrices at a given a 

[A - CX,U€~ = 0 (29) 

which is solved by means of a QR algorithm. 
Typical computed growth rates of the dominant disturbances of the y1 family are 
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FIGURE 12. Typical computed growth rates of the dominant disturbances of the y1 family for 
8 = 0.062 (a, = 0.711, a, = 0.675, a, = 0.623) and S = 0.27 (u, = 1.006, us = 0.975, a, = 0.78). 
Three-dimensional disturbances are only dominant in the indicated windows within some of which 
az and a, lie. The depicted v corresponds to these three-dimensional disturbances. The growth rates 
of the two-dimensional disturbances in these windows are only slightly lower and they are depicted 
by broken curves. (a) 8 = 0.062, (b) 0.27. 

shown in figure 12 and table 5 for 6 > 0.037. Only the most unstable disturbance for 
every stationary wave is depicted. Many of the earlier predictions are confirmed. The 
short waves near the neutral curve are either unstable to two-dimensional sideband 
disturbances (v small) or two-dimensional subharmonic disturbances (v = 0.5). The 
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2-dimensional disturbances 
( R ) H 2 0  1 (cm) c (cm/s) 2n/va (cm) apR/ac 
7.36 0.897 15.38 7.89 0.0106 
11.45 0.822 18.48 3.24 0.0993 
16.47 0.778 21.38 2.29 0.198 
21.13 0.751 23.69 1.94 0.267 
27.22 0.726 26.41 1.71 0.316 

3-dimensional disturbances 
< R ) H z O  (m) (cm/s) "lva (cm) 2n/P (cm) apR/ac 

7.32 0.961 15.34 1.92 1.138 0.126 
11.42 0.848 18.42 1.70 1.38 0.186 
16.40 0.819 21.30 1.64 1.71 0.238 
21.10 0.764 23.60 1.53 2.49 0.247 
27.16 0.742 26.37 1.48 2.97 0.334 

Kapitza's prediction 
( R ) H z O  I (cm) c (cm/s) 6 a2 

7.36 0.882 15.39 0.062 0.724 
11.46 0.763 18.71 0.10 0.874 
16.51 0.710 21.81 0.15 0.971 
21.21 0.693 24.2 0.20 1.025 
27.4 0.621 27.7 0.27 1.173 

TABLE 5. Most stable member of the y1 family 

s "2 

0.062 0.71 1 
0.10 0.81 1 
0.15 0.889 
0.20 0.945 
0.27 1.006 

6 a, 
0.062 0.675 
0.10 0.783 
0.15 0.868 
0.20 0.928 
0.27 0.984 

last unstable wave at a, is slightly above a, and it is dominated by three-dimensional 
disturbances with small /3 and v = 0.5. The stationary waves near a, remain unstable 
to sideband (v 6 1) and subharmonic (v = 0.5) two-dimensional disturbances with 
growth rates close to but smaller than the three-dimensional ones. In fact, the wave 
least unstable to two-dimensional disturbances has a wavenumber a2 only slightly 
higher than a,. The growth rate of the dominant disturbance at a, is two to four times 
smaller than the dominant growth rate of the flat film (which is equivalent to that of 
the solitary wave at a = 0 in figure 12). This implies that the lifetime or length of the 
selected stationary wave is two to four times that of the flat inception region, which is 
already quite visible in a channel. The dominant growth rate of the stationary waves 
at a, increases with 6. For S in excess of unity, it is of the same order as the dominant 
flat-film growth rate. Beyond that (S 2 l), one does not expect the wave evolution to 
be locally stationary. Another requirement for the stationary assumption to hold is 
timescale separation that stipulates that the unstable disturbances must have a far 
smaller absolute value than the stable ones. This is related to the argument that the 
evolution involves two timescales which are used in the Stuart-Landau formalism and 
the Center Manifold theories (Cheng & Chang 1990). For all our computed results, 
only one or two eigenvalues are unstable near a, and their growth rates are at least 5 
times larger than the growth rate of the most stable mode. The results for the y1 family 
are also tabulated in table 5 and compared to Kapitza's prediction (27a). It is clear that 
the latter is an extremely accurate estimate of the stability of the stationary waves to 
two-dimensional disturbances at small 6. The wave in y1 with the highest flow rate is 
also predicted to the third decimal place by Kapitza's criterion in table 5, confirming 
the ability of (27a) to predict a2 to within 10 % for 6 < 0.20. The dissipation rate E is 
shown in figure 13 for S = 0.062. A single minimum close to a2 is seen. The location 
of a, is also marked in figure 8. It is clear that this selected wave is slower and shorter 
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FIGURE 13. The viscous dissipation rate of the stationary waves on the y1 and yz families at 

S = 0.062. The local minima for the yz family are also listed in table 6. 

than the fastest growing wave at inception with wavenumber am. In figure 14, we 
compare the inception speed data of Stainthorp & Allen (1965) and the y1 stationary 
wave speed data from naturally excited experiments of Stainthorp & Allen and Kapitza 
& Kapitza (1949) to the predicted speed from the linear dispersion relationship at am 
and the speed of the stationary wave at a,. It is clear that, while both sets of speed data 
from Stainthorp & Allen are above the predicted values, a statistically significant 
separation exists between them and the y1 stationary waves of Kapitza & Kapitza 
possess wave speeds close to our prediction. 

Typical growth rates of the dominant two-dimensional disturbances for the yz family 
are shown in figure 15. The growth rate again approaches those of the flat-film Nusselt 
basic state at the solitary limit a + 0. The shorter waves remain unstable to sideband 
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FIGURE 14. Difference in wave speeds in the inception region and in the finite-amplitude capillary 
wave region corresponding to the y1 wave family. 

and subharmonic instabilities. However, in the intermediate region, multiple discrete 
regions of stability are seen. The distance between these intervals decreases with 
decreasing a. There exists a limiting stable interval with a lowest interval of a, centered 
at af. This lower bound decreases with increasing S. This is in contrast with the growth 
rates of the y1 family where all waves are unstable to two-dimensional disturbances for 
S > 0.037 and there exists a unique minimum of the two-dimensional growth rate. In 
all these discrete intervals of stability, the waves are unstable to three-dimensional 
disturbances with a very small growth rate, which is not shown in figure 15. Outside 
the stable intervals, two-dimensional disturbances and, within the intervals, the small 
but dominant three-dimensional disturbances have long transverse variation @ < 1) 
and subharmonic (v = 0.5) or sideband (v 4 1) streamwise variations. As S increases, 
the growth rate of the y2 family tends to increase as a whole with the shorter waves 
destabilizing more than the longer waves. As a result, some of the stable intervals at 
higher a disappear with increasing S. The stable intervals at lower a also shrink in size 
such that they can be accurately represented by a single value of a. For example, the 
interval with the longest stable waves on y2 corresponds to a small gap around af. We 
will hence represent these intervals by the discrete wavenumbers at their centres. 
Kapitza's dissipation selection theory is again extremely accurate for the yz  family at 
low 6 as seen in figure 13 and table 6. The centres of the stable intervals appear as local 
minima in the dissipation and several of them are accurately captured. Comparing to 
the dissipation rate of the y1 family, it appears that a global minimum of the dissipation 
rate exists and it corresponds to the lower accumulation point af of the stable intervals 
before the growth rate approaches the flat-film limit of the solitary waves. At this small 
value of af, the waves resemble solitary waves with the large tear-drop hump occupying 
only about one-fourth or one-fifth of the entire wavelength. The remaining portion is 
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Two-dimensional linear 
stability Kapitza's criteria 

(R)€i%O 1(cm) c (cm/s> 1 (cm) c (cm/s) 
7.42 1.33 17.4 (1) 1.33 17.4 
7.49 1.71 18.6 (2) 1.72 18.6 
7.57 2.06 19.6 (3) 2.1 1 19.7 
7.65 2.37 20.5 Absent - 
8.07 4.51 25.2 (4) 7.83 29.5 

TABLE 6. Selected wave members on yz at 6 = 0.062 

covered by small to imperceptible capillary waves. Nevertheless, these capillary waves 
must provide sufficient interaction to suppress the flat-film instability of a true solitary 
wave. At higher 6, the capillary waves are larger and their stronger interaction can then 
sustain a larger separation between the humps. The conclusion that the near-solitary 
wave at 0 1 ~  is the global minimum of all stationary waves is, of course, only true at low 
6. At higher 6 values, inertia and surface tension effects must be considered. The stable 
intervals of the yz family of water are shown in figure 16. As 6 (or ( R ) )  increases, some 
of the shorter waves begin to destabilize and the longer stable waves begin to disappear 
as minima in Kapitza's dissipation rate. The implied conclusion that the long waves 
near af are unstable at large 6 is, however, erroneous since our linear stability result 
indicates that they remain stable. Hence, interaction between the capillary waves, 
which can involve the capillary or inertia forces ignored in the dissipation theory, 
remains stabilizing. The stable intervals are also sketched in figure 8. We have also 
investigated the stability of the y p )  families and found them to all be unstable to two- 
dimensional disturbances. They hence will probably not be selected under sufficiently 
rich excitation. 

An intriguing qualitative explanation for the multiple intervals of long yz waves that 
are stable to two-dimensional disturbances is offered by the coherent structure theory 
for solitary wave interaction (Elphick, Meron & Spiegel 1988). One notices on 
examining figure 7 that the long periodic waves on yz can be accurately approximated 
by separating the same solitary wave structure at vanishing 01 by different intervals. 
(The wave tracings in figure 7 are normalized by their wavelengths and this observation 
hence requires some care.) Consequently, even though the true solitary wave is 
unstable because of the large span of flat films away from its coherent structure (a tear- 
drop hump preceded by front-running capillary ' bow ' waves), which occupies a 
relatively small interval of space, the same coherent structure can be placed in a 
periodic train to yield a stable periodic wave. We again demonstrate this concept with 
the simple KS equation (20) even though the stable waves appear only at finite 6. Let 

k + i  

where Ui is a solitary wave solution satisfying either (21) and (22) or (23), depending 
on the formulation. The function U, represents the other solitary wave coherent 
structures which have identical shapes but different locations and possibly different 
speeds. The local coordinates ti = t- jci(7) d7 have origins at the maxima of the ith 
solitary wave which moves at speed ci. (Since (20) has been properly reduced, its 
solitary wave solution approaches zero at both infinities and (30) does not require base- 
line corrections.) We shall only be interested in the interaction of the ith solitary wave 
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FIGURE 16. The predicted stable waves on the ye family for water. The shorter ones der abilize at 
higher Reynolds numbers. The longer ones are very robust in spite of Kapitza's prediction of eventual 
destabilization at high Reynolds numbers. 

with its two nearest neighbours, namely k = i- 1 and i+ 1. The solitary waves are also 
assumed to be sufficiently apart such that the interaction occurs only at the small- 
amplitude ends of the solitary waves, which can be described by (Chang 1986) 

where A ,  B and &, are positive constants that must be obtained from the full solitary 
wave solution of figure 2, but 0; and w can be easily determined from the linearized 
version of (21) or (23). Equation (31a) for the front end describes the front-running 
capillary waves. Knowing that ,u approaches 1.2 from figure 2 and inserting H - eat 
into the linearized version of (21), one obtains the eigenvalue problem 

a3+g-1.2 = 0, (32) 

which yields u1 = 0.38, w = 1.20 and cr2 = 0.76. 
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Multiplying (20) by Hand integrating from 5 = - co to 6 = + co yields an evolution 
equation for the deviation flux Q: 

$(d/dt)(H2) = ( H i ) - ( H t " , .  (33) 
Inserting (30) into (33) and retaining only the leading-order mutual interaction terms 
(all self-interaction terms vanish by definition), one obtains 

where (21) has been invoked after integration by parts. 

(d/dt) ( H 2 )  = 0, and the separation between the solitary waves is constant at s, 
The excess flux of a stationary periodic train of solitary waves does not vary in time, 

56-1 = &+s, &+I = ti-$. (35a, b) 
Equation (34) can then be rewritten for a periodic wave as 

( b U i  -2U;] A( - C T ~  + iw) exp (- g1 + iw) 5) exp {( - g1 +iw) s+i$,> + C.C. 

+(I.Ui-2U;]Ba,exp(~,Q)exp(-azs) = F(s) = 0, (36) 
where C.C. denotes complex conjugate. 

The zeros of F(s) are hence the wavelengths of stationary periodic waves and as in 
Elphick et al. (1988), the stable periodic waves form a subset of these zeros. We shall 
refrain from an exact evaluation of the necessary integrals in (36) here but observe that 
in the long wave limit, s+ co, F(s) oscillates about zero with a frequency w 
corresponding to the wave frequency w of the front-running capillary waves. 
Consequently, an infinite number of equally spaced zeros at large s, 

lim s, = 27cn/w. 
n+ m 

(37) 

(There is another subset corresponding to nn/w but these correspond to unstable 
periodic waves.) Equivalently, (37) predicts that the wavenumber a, of the long stable 
waves on y2 varies as n-l, 

and the interval between the stable waves varies as n-', 
a, - w/n (38 4 

(38 b) Aa, = a, -anpl N wp2.  

Both predictions are consistent with our linear stability results of figure 15. For 
example, for 6 = 0.062, the stable waves are located at approximately 
a: = (0.48,0.38,0.31,0.26, ...). This yields an s, of approximately 13+3.8n, after 
invoking the lengthscale of the KS equation t = a,x = (18S)ax, which is close to the 
5.2n prediction of (37). The variations of a, and Aa, for all S in figure 15 are also close 
to the predictions of (38). 

The above theory only measures the interaction among the nearest coherent 
structures in a train of solitary waves. It ignores the primary instability of a flat film 
when the solitary waves are too far apart. Consequently, the series a, of (38) does not 
approach zero in figure 15. Instead, below a,, the neglected primary instability of the 
flat film begins to dominate and destabilizes all waves with wavelengths longer than 
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FIGURE 17. The shaded curves are bounds on the wavenumbers of the observed waves in the forced 
experiment of Alekseenko et al. (1985) for water. They are favourably compared to our predictions 
of as and a*. 

2n/a,. Strong coherent-structure interaction reduces this flat-film primary instability 
and hence lowers af. This explains the decrease in af with increasing 6 since the solitary 
wave amplitude increases with 6. It may also explain an apparent inconsistency of the 
coherent-structure theory. Owing to symmetry (25), the theory can also be applied to 
the y1 (actually C-,) family of the KS equation to yield the conclusion that the negative 
solitary wave of figure 6 can also interact favourably to form a stable periodic train. 
This stability is not found in long-wave members of the y1 family. This is probably due 
to the far smaller (and slower in absolute speed) solitary wave limit of the y1 family 
relative to the yz family evident in figures 7 and 8. These weak solitary waves of y1 
simply cannot overwhelm the flat-film instability of long periodic stationary waves. 
This is evident in the growth rates of the y1 family in figure 12. The flat-film instability 
begins to dominate at a relatively high a( < 0.6) compared to a,( < 0.2) of the yz family. 
This argument also explains why the C, family of the KS equation is found to be 
unstable. The positive solitary waves at vanishing 6 are also too weak to sustain a 
periodic train. The stable intervals hence exist at small but finite 6 on the yz family 
because of the dramatic increase in amplitude and speed of the yz solitary wave with 
respect to 6. Finally, in spite of the surprising accuracy of (38) in the above theory, it 
must be remembered that the theory remains speculative since the KS equation 
invoked in the analysis does not yield stable periodic waves near the solitary-wave 
limit. The only stable waves of the KS equation lie within the near-neutral wavenumber 
band (a/a,) E (0.77,0.84) on the S family. The dispersive effect of 6 somehow validates 
the above coherent structure theory. A more detailed theory which includes 6 will 
appear elsewhere (Chang et al. 1993). 

A selection mechanism has now appeared from our analysis. As is sketched in figure 
8, an unforced system with minimal three-dimensional disturbance will appear as two- 
dimensional monochromatic waves with wavenumber am after the inception region. It 
should then approach finite-amplitude capillary waves on y1 with wavenumbers close 
to 01, or az (path I) and then near solitary waves close to ctf on yz (path 11). The second 
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FIGURE 18. Evolution simulation in the Lagrangian frame with speed 3 at S = 0.05. An initial packet 
with a local wave number equal to am = 0.612 is introduced. Slower waves with shorter wavelengths 
corresponding to a2 on y1 are seen to fall back from the wave packet during path I of figure 8. This 
is followed by the creation of long solitary waves near a, on the yz family which separates from the 
packet during path I1 of the transition. The spatial coordinate is ax where a = 0.00897. 

transition from y1 to yz  can be a subharmonic instability if the suppressed three- 
dimensional disturbances have grown to a significant amplitude. In this case, a stable 
wave on yz with a wavenumber approximately half that of 01, will be approached. If the 
disturbances remain two-dimensional, the dominant two-dimensional disturbance on 
yI is either a sideband instability (v < 1) or a subharmonic instability (u = 0.5) and a 
long stable wave on yz near 0 1 ~  may also be selected. Further downstream, these near- 
solitary waves on yz will eventually succumb to long transverse variations. 

If periodic forcing with two-dimensional disturbance is introduced, any of the stable 
waves on yz can be observed since the initial transitions (paths I and 11) have been 
suppressed. If the forcing frequency is higher than the shortest stable wave of yz, then 
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the waves will most likely evolve towards a, or az on y1 before undergoing transitions 
to the long waves on y 2  as in a naturally excited system. This would then imply that 
the observed waves for a forced experiment are bounded between as and a,. This was 
indeed reported by Alekseenko et al. (1985) and we favourably compare their 
experimental bound to a, and a, from our theory in figure 17. 

Finally, we report a preliminary two-dimensional simulation that supports our 
theory on the wave evolution process. Simulation of wave evolution on a falling film 
is hampered by the exceedingly long evolution length of all the transitions. One 
solution is to carry out the simulation in a Lagrangian frame moving at a speed of 3 
and to invoke periodic boundary conditions. To include several near-solitary waves in 
the domain, however, the spatial period of the computational box must still be large. 
Moreover, periodicity usually introduces non-stationary interaction among the waves 
that does not appear in the real system. We overcome these obstacles by ignoring the 
linear inception region and begin our simulation with a wave packet with the local 
wavenumber aloe close to a, in the middle of a computation box in the Lagrangian 
frame. The wave packet initial condition removes the boundary effects of the periodic 
boundary condition and it also minimizes the interaction between the y1 and y 2  waves 
since they will propagate towards the flat films at two different ends of the wave packet. 
A total of 256 complex Fourier modes are used with a fourth-order Runge-Kutta time 
integration scheme with a step size of aAt = As seen in figure 18, one sees an 
initial approach towards a shorter and slower y1 capillary wave as these waves move 
toward the back of the packet. A secondary transition towards the near-solitary waves 
of yz near af is then seen as the unique solitary wave shapes begin to evolve and 
separate from the front of the wave packet. Our simulations for S < 0.037 show that 
the second transition to yz  waves does not occur. This is, of course, due to the existence 
of waves stable to two-dimensional disturbances on y1 near az. Changing the width or 
amplitude of the initial wave packet does not alter the evolution process qualitatively. 
Reducing aloe of the initial wave packet, however, can initiate a direct transition to the 
yz family without approaching the stationary waves on y l .  This then corresponds to 
slowly forced experiments that bypass the initial deceleration state (path I in figure 8) 
towards the y1 waves. 

6. Summary 
The primary, secondary and tertiary transitions of waves to the inception, capillary 

and solitary wave regimes on falling film have been analysed. There exist an infinite 
number of stationary wave families and all of them are unstable to three-dimensional 
disturbances. However, if three-dimensional disturbances are minimized, then several 
discrete members on two key wave families, y1 and yz, will have sufficient lifetimes to 
appear on the film. There is only one such wave a, (or az if three-dimensional 
disturbances are suppressed) on y1 and all naturally excited two-dimensional waves will 
evolve through this wave. There are several candidates on yz and the particular one 
selected depends on the disturbances present at the end of the y1 capillary wave regime. 
If a purely two-dimensional wave is selected on yz, it will either be a stable wave with 
wavenumber close to ;as or ;a, via a subharmonic transition or a long wave near olf via 
a sideband transition. If three-dimensional disturbances are present, it will undergo a 
subharmonic transition in the streamwise direction with long transverse variation. It is 
known that after the solitary wave regime, the waves break into non-stationary three- 
dimensional patterns. This implies that three-dimensional stationary waves either do 
not exist or have very short lifetimes to be meaningful. This final transition to 
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interfacial ‘turbulence ’ must then be analysed with an entirely different approach. Our 
suspicion is that an extension of the coherent theory to include long transverse phase 
instabilities should be most promising towards further understanding of this final 
transition. 

This work is supported by DOE under the Engineering Research Programme. 

Appendix A. Derivation of two-dimensional boundary-layer equations 
After the scaling by K ,  one obtains from ( l t (4) ,  for the simplest case of 0 = :K,  

-+u-+v-=--+- -+3+- -  au au au 
a t  ax ay ax R ay2 

4h, av  
ay K~ ax ~ ~ ( 1  - ~ E / K ~ )  5 = 0,  au 1 av  -+--+ 

y = o :  u = v = o .  

Reverting to the E and S notation of (8) and carrying out an expansion in E ,  one obtains 
after rescaling p by 6,p +p/& 

y = h(x, t )  : v = h, + uh,, 

To leading order in e, ap/ay vanishes, indicating that pressure is independent of the 
transverse direction, and apiplax in the x-momentum equation can then be determined 
from the normal stress condition at the interface,p = po -&.,. This yields equation (9). 
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Appendix B. Numerical technique for the stationary waves 
At a particular streamwise location x, the values of u and v at the end of element k 

is labelled (u,, v,), k = 1,2,. .. , N, where (uo, vo) = (0,O) by (17e) and (17f) and the kth 
element spans fromy,-, = (k -  1) h(x)/N to y ,  = kh(x)/N. We then integrate (17) from 
Yk to y,,,: 

k = 0 , 1 , 2  ,..., N-1; and udy-ch=q-c. (B 3) 

In deriving (B 3), (17) has been integrated in the vertical direction. Equations 
(B 1 H B  3) are extremely difficult to integrate because the third derivative term a3h/ax3 
appears in every layer equation. We hence isolate the right-hand side of (B 1) by 
summing over all elements at every x to yield 

The momentum balance equation (B 1) for each element is also replaced by the 
following equation which is obtained by subtracting the equation for k from the one 
for k-1: 

where k = 1,2, ... , (N- l), and 

This eliminates the destabilizing h,,, term from each element. We also note that 
derivatives of v do not appear. The continuity and kinematic equations, (B 2) and 
(B 3), remain the same. 

We shall use a second-order polynomial for u at every element, 

u = uk + Du, 7, + $D%, 7; = A,(x) + B,(x) 7, + $C,(X) YE, 
where 7, is the local coordinate for layer k 

7, = N(y-Yk)/h 
and Du, and D2u, represent the first and second derivatives of u at y,. A more elegant 
expansion with orthogonal polynomials like the Legendre basis is also possible. In such 
cases, (B 1) and (B 2) would involve inner products with some test functions, which 
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would be the same bases for a Galerkin formulation of the finite-element scheme. We 
shall ensure both the zeroth derivative and the first derivative are continuous at the 
layer boundaries : 

uk + DUk +iD2Uk = uk+1, (B 6 )  
Duk+D2uk = D u ~ + ~ ,  (B 7) 

(B 8) 

for k = 0,1,2,. . . , ( N -  1). We can combine both equations to eliminate D2uk, 

uk +i(Duk+l + Duk) = 'k+l 

for k = 0, 1,2,. . . , ( N -  1). For the last element, we impose the stress-free condition 
(174, 

That the first derivative is continuous, as is the zeroth derivative, allows us to use a very 
small number of elements although the number of equations increases. In (B 8) and 
(B9), we have N+1 equations for the N+1 first derivatives of u at yk 
(Du,, Dul,. . . , Du,). Since they are linear equations, one can obtain an explicit 
expression of the first derivatives in terms of the zeroth derivatives 

Du, = 0. (B 9) 

Duk =fk(Ui, u p . .  ., U N ) .  

Upon evaluating Duk, D2uk can then be obtained from (6). 
With the above treatment of the derivatives, (B 4), (B 5) ,  (B 2) and (B 3) yield 2N+ 1 

equations for the unknowns {~~,v~,h}:=~ at every x-location. Since v k  can be solved 
explicitly from (B 2) and u, can be conveniently expressed as a function of {u,}:': and 
h with (B 3), it is simpler to view (B 4) and (B 5 )  as N equations for the N unknowns 
(u,>,"=;' and h. We now seek resolution in the x-direction. A Fourier series expansion 
is used in this direction: 

M 
h = 1 + C a,cosamx+b,sinarnx, 

m = l  

M 

uk = A:) + C Aim) cos amx + BLm) sin amx, (B 11) 
m = l  

where 01 is the wavenumber 2x/l. Without loss of generality, we can choose a, to be zero 
which corresponds to an arbitrary assignment of a reference point. Substituting (B 10) 
and (B 11) and equating terms of the same harmonic, we then have a total of 
(2M+ 1)(N+ 1) unknowns in c, q, {am>fx2,  {bm}fe1, {ALm)}E-o and {BLm)}f-l and the 
same number of equations. We solve this system of quadratic equations with a Newton 
iteration method. Without the h,,, curvature term and with the layer decomposition, 
the inverted matrix in the iteration has a very narrow band. Convergence with respect 
to both N and M are tested. Less than 0.5 % error in the largest Fourier coefficient of 
h is ensured. The maximum N is 7 and the maximum M is about 70, to yield a total 
maximum of about 1000 equations and unknowns. The large M,,, is because of the 
large Fourier contents of long solitary waves. The small N,,, is due to our elimination 
of h,,, at the interior elements and the imposition of continuous first derivative. 
Without these simplifications, N,,, increases dramatically since the velocity profile can 
be highly non-parabolic. We calculate the nonlinear terms in the physical space and 
then insert them with the linear terms during the iteration in the Fourier space with the 
aid of a fast Fourier transform. This technique of solving equations of instability- 
dissipation type has the following advantage. The high-frequency (wavenumber) 
error generated during the evaluation of the nonlinear terms is damped during the 
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iteration in the Fourier space since the high-frequency modes are linearly stable as 
the iteration is quite analogous to the actual evolution in time. It hence accurately 
estimates the two dominant mechanisms in stationary waves - linear instability 
and nonlinear saturation. A continuation scheme is also used to trace the solution 
branches as a function of a. A typical wave profile requires 30 seconds on the CONVEX 
computer. 
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